Math 261

Fall 2023
Lecture 26

Feb 19-8:47 AM

Given $f(x)=\sqrt[3]{x} \quad$ Domain $(-\infty, \infty)$

$$
f(-x)=\sqrt[3]{-x}=\sqrt[3]{-1} \cdot \sqrt[3]{x}=-\sqrt[3]{x}=-f(x)
$$

Since $f(-x)=-f(x)$
$f(x)$ is odd, and symmetric with respect to the origin.

$$
\begin{aligned}
& f(x)=x^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \\
& f^{\prime}(x)=\frac{1}{3 \sqrt[3]{x^{2}}} \\
& \text { Not } \\
& \text { differentiable at } x=0
\end{aligned}
$$

$f(x)$ is cont. everywhere but not diff. at $x=0$.

Oct 12-10:35 AM

Given $f(x)=\frac{1-6 x}{x+3}$ Cont. everywhere except at $x=-3$.

$$
\begin{aligned}
f^{\prime}(x)=\frac{-6(x+3)-(1-6 x) \cdot 1}{(x+3)^{2}} & =\frac{-6 x-18-1+6 x}{(x+3)^{2}} \\
& =\frac{-19}{(x+3)^{2}}
\end{aligned}
$$

$f^{\prime}(x)$ is undefined at $x=-3$.
So $f(x)$ is not differentiable at $x=-3$.

Show $f(x)=|x|$ is not differentiable at $x=0$.

$$
|x|=\sqrt{x^{2}}
$$

$$
\begin{aligned}
&|x|= \begin{cases}-x & \text { is } x<0 \\
x & \text { if } x \geq 0\end{cases} \\
& \frac{d}{d x}[|x|]= \begin{cases}-1 & \text { if } x<0 \\
1 & \text { if } x>0\end{cases} \\
& f^{\prime}(x)=\frac{1}{z}\left(x^{2}\right)^{\frac{1}{2}-1} \cdot \not 2 x
\end{aligned} \quad \begin{aligned}
& x \\
& \\
& \left(x^{2}\right)^{1 / 2} \\
& =\frac{x}{\sqrt{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& |x|=\sqrt{x^{2}} \\
& f(x)=\sqrt{x^{2}}=\left(x^{2}\right)^{1 / 2} \quad f^{\prime}(x)=\frac{1}{2}\left(x^{2}\right)^{\frac{1}{2}-1} \cdot \not x x
\end{aligned}
$$

not defined

$$
\text { at } x=0
$$

$f(x)$ is not differentiable at $x=0$

Oct 12-10:45 AM
find eqn of the tangent line to the graph
of $f(x)=\sqrt{1+x^{3}}$ at $x=2, \quad y-y_{1}=m\left(x-x_{1}\right)$
 $y-3=2(x-2)$

$$
f^{\prime}(x)=\frac{3 x^{2}}{2 \sqrt{1+x^{3}}}
$$

$$
f^{\prime}(2)=\frac{3 \cdot 2^{2}}{2 \sqrt{1+2^{3}}}=2
$$

Oct 12-10:56 AM

1) find a point in QI on the graph of
the equation $x^{3}+y^{3}-6 x y=0$ where $x=3$.

$$
\begin{aligned}
& \left.\begin{array}{l}
3^{3}+y^{3}-6(3) y=0 \\
y^{3}-18 y+27=0
\end{array}\right\} \begin{array}{ccc}
1 & 0 & -18 \\
\hline 1 & 27 \\
3 & 9 & -27 \\
3 & \text { is the answer }
\end{array} \\
& \begin{array}{l}
x^{3}+y^{3}-6 x y=0 \\
\frac{d}{d x}\left[x^{3}+y^{3}-6 x y\right]=\frac{d}{d x}[0] \\
\frac{d}{d x}\left[x^{3}\right]+\frac{d}{d x}\left[y^{3}\right]-6 \frac{d}{d x}[x y]=0 \\
3 x^{2}+3 y^{2} \cdot \frac{d y}{d x}-6\left[1 \cdot y+x \cdot \frac{d y}{d x}\right]=0 \\
\text { at }(3,3), \left.\frac{d y}{d x} \right\rvert\,(3,3)=m+\tan . l \text { line } \\
3(3)^{2}+3(3)^{2} \cdot m-6[1 \cdot 3+3 \cdot m]=0
\end{array}
\end{aligned}
$$

Solve for m \& slope of tan. line find eqn. of tan. line at $(3,3) \quad a+(3,3)$

Class QZ 12
find $f^{\prime}(x)$ Do not Simplify

1) $f(x)=\left(x^{4}-4 x^{2}\right)^{3} \quad f^{\prime}(x)=3\left(x^{4}-4 x^{2}\right)^{2} \cdot\left(4 x^{3}-8 x\right)$
2) $f(x)=\cos (\sqrt{x}) \quad f^{\prime}(x)=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}$
3) $x^{4}-y^{2}=8 x$ where $y=f(x)$

$$
4 x^{3}-2 y \frac{d y}{d x}=8 \quad 4 x^{3}-8=2 y \frac{d y}{d x} \quad \frac{d y}{d x}=\frac{4 x^{3}-8}{2 y}
$$

